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1 Function Theory

1.1 Foundations

Definition: A function f is a rule which unambiguously assigns y ∈ B to each x ∈ A.

”x ∈ A” means that ”x is an element of A”.

set B

O

H

source

origin
target

image
set A

f

Figure 1: Illustration of a function

Notation:
f : A → B
f : A → B x ∈ A, y ∈ B

y = f(x) x ∈ A, y ∈ B

y = y(x) x ∈ A, y ∈ B

Examples:

4.5
1.4

21

7

0

170.5

2

31

set Bset A

f

Figure 2: Assigning an element {21} ∈ B to {1} ∈ A
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Most commonly, functions are defined by equations: y = f(x) = 2x+1 y = f(x) = x2

Graphical representation:

−2 −1 0 1 2

−2

−1

0

1

2

variable x

fu
nc

ti
on

 y

(a) Function y = 2x + 1

−2 −1 0 1 2

0

1

2

3

4

variable x

fu
nc

ti
on

 y

(b) Function y = x2

Figure 3: A linear and a quadratic function

1.2 Inverse Functions

f−1 denotes the inverse of the function f .

-1

f

O

H

f
set A set B

Figure 4: Inverse function

Notation:
f−1 : B → A

x = f−1 (y) where y = f(x)
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Graphically the inverse can be constructed as the mirror image of the function at the first bisector.
This method always works, but caution is asked for, because the inverse may not be unique and
require more detailed discussion.

Example:

y = f(x) = 2x + 1 x = f−1 (y) =
1
2

(y − 1)

Note: There is not always an inverse function!

? H

f

f

  

O

f
-1

set A set B

Figure 5: The inverse f−1 is not unique, thus not a function.

Example:
y = f(x) = x2

x =
√

y or x = −√y

−2 −1 0 1 2

−2

−1

0

1

2

y=2x +1
y=1/2(x−1)

(a) f(x) = 2 x + 1 → f−1(x) = 1
2
(x− 1)

−2 −1 0 1 2

−2

−1

0

1

2

y=x2

y=±√x

(b) f(x) = x2 → f−1(x) = ±√x

Figure 6: Graphical construction of the inverse function
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1.3 Implicit Functions

A function is not given explicitly as in y = f(x), but implicitly by F (x, y) = 0.

Example: Unit circle: F (x, y) = x2 + y2 − 1 = 0.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 7: Unit circle

The implicit representation of the unit circle also needs additional conditions to become unique
and thus a function: a local neighborhood has to be defined, e.g. y =

√
1− x2 for x ∈ (−1; 1),

y > 0 and y = −√1− x2 for x ∈ (−1; 1), y < 0.

1.4 Polynomials

Polynomials are defined as a class of functions of the form

y = a0 + a1 x + a2 x2 + · · ·+ aN xN =
N∑

n=0

an xn

where the function y is said to be a polynomial of order N .

Example:
y = 2︸︷︷︸

a2

x2 + 8︸︷︷︸
a1

x + 4︸︷︷︸
a0

Goal: To achieve a qualitative understanding of a given function without computing each value.

Approach:

y =
N∑

n=0

an xn where we assume aN > 0

Step 1: If N is even, then x → ±∞ : y → ±∞ ; if N is odd, then x → ±∞ : y → ∓∞. Note:
If aN < 0, the behavior is the opposite.
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Step 2: A polynomial of order N has N roots which are the solutions of f(x) = 0.

Set y = 0 : f(x) = xN + aN−1 xN−1 + · · ·+ a1 x + a0 = 0

y = 17x + 4 y = 0 : x = − 4
17 → 1 root

y = 2x2 + 8x + 4 y = 0 : x = 1
4(−8±√82 − 4 · 2 · 4) = 1

4(−8±
√

32) = −2±√2 → 2 roots

⇒ the roots are the locations where f(x) crosses the x-axis.

Examples: Construct graph of y = f(x)

−3 −2 −1 0

0

1

2

3

?

(a) Step 1: y = x2 + 3x + 2

−3 −2 −1 0

0

1

2

3

(b) Step 2: y = x2 + 3x + 2 = 0

Figure 8: Graphical construction (the roots are x = −1 and x = −2)

−3 −2 −1 0 1

−5

0

5

?

(a) Step 1: y = x3 + 2x2 − 3x

−3 −2 −1 0 1

−5

0

5

(b) Step 2: y = x3 + 2x2 − 3x = 0

Figure 9: Graphical construction (the roots are x = −3, x = 0 and x = 1)
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−3 −2 −1 0 1

−10

−5

0

5

10

15

?

(a) Step 1: y = x4 + 2x3 − 3x2

−3 −2 −1 0 1

−10

−5

0

5

10

15

(b) Step 2: y = x4 + 2x3 − 3x2 = 0

Figure 10: Graphical construction (the roots are x = −3, x = 0 and x = 1)

Horizontal translation is a horizontal shift of a function by x0

y = f(x) → y = f(x− x0)

Example: y = x2 shift by x0 = 2: y = (x− 2)2 = x2 − 4x + 4

Vertical translation is a vertical shift of a function by y0

y = f(x) → y = f(x) + y0

Example: y = x2 shift by y0 = 2: y = x2 + 2

−2 0 2 4

0

5

10

(a) Horizontal shift by x0 = 2 : y = (x− 2)2

−2 0 2 4

0

5

10

(b) Vertical shift by y0 = 2 : y = x2 + 2

Figure 11: Vertical and horizontal shift of y = x2
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1.5 Trigonometric Functions

Trigonometric functions are a class of periodic functions such as

y = f(x) = A sin(kx + φ) and y = f(x) = A cos(kx + φ)

The constant parameters are the amplitude A, the frequency k and the phase (angle) φ. The
period is defined as λ = 2π/k and the trigonometric functions fulfill the relation f(x+λ) = f(x).

Special values of trigonometric functions (midnight stuff)

x 0 π/6 = 30◦ π/4 = 45◦ π/3 = 60◦ π/2 = 90◦ π = 180◦ 3π/2 = 270◦ 2π = 360◦

sin x 0 1/2
√

2/2
√

3/2 1 0 −1 0

cosx 1
√

3/2
√

2/2 1/2 0 −1 0 1

Horizontal translation (shift) by means of φ:

sin(x +
π

2
) = cosx cos(x +

π

2
) = − sinx sin(x− π

2
) = − cosx cos(x− π

2
) = sinx

Useful relations between cosx and sinx:

cos2 x + sin2 x = 1

sin(x± y) = sinx cos y ± cosx sin y cos(x± y) = cosx cos y ∓ sinx sin y

sin 2x = 2 sinx cosx cos 2x = cos2 x− sin2 x

Other trigonometric functions:

tanx =
sinx

cosx
cotx =

cosx

sinx

−2 0 2 4

−1

−0.5

0

0.5

1 sin x
cos x

(a) The functions y=sin x and y=cos x

−1 0 1 2 3

−4

−2

0

2

4
tan x
cot x

(b) The functions y = tan x and y = cot x. Note
that these are π-periodic

Figure 12: The most common trigonometric functions
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1.6 Exponential Functions

Exponential functions are functions most commonly used in the form

y = Aekx = A exp kx

with the constant parameters: A amplitude, k growth rate if k > 0 and the damping or fall off,
if k < 0, and e Euler number: 2.714....

Note that e0 = 1 and e−x = 1
ex .

−2 −1 0 1 2

0

5

10

ex

e−x

10x

2x

Figure 13: Exponential functions

1.7 Hyperbolic Functions

Hyperbolic functions are of the form

y = f(x) = coshx =
1
2
(ex + e−x) hyperbolic cosine

and

y = f(x) = sinhx =
1
2
(ex − e−x) hyperbolic sine

They have similar properties as the trigonometric functions such as a representation by expo-
nentials (as we shall see later), and their derivatives convert into each other. But the hyperbolic
functions are not periodic.

Other hyperbolic functions:

y = tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x
y = cothx =

coshx

sinhx
=

ex + e−x

ex − e−x
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−2 −1 0 1 2

1

2

3

4

sinh x
x+1/2! x 2

(a) y = sinh x and y = x + 1
3!

x3

−2 −1 0 1 2

−4

−2

0

2

4

sinh x
x+1/3! x 3

(b) y = cosh x and y = 1 + 1
2!

x2

Figure 14: Hyperbolic functions

1.8 Basic Inverse Functions

1.8.1 Logarithms

The logarithms are the inverse of the exponential functions:

y = ax ↔ x = loga y where 0 < y < ∞

Special cases:

a = e : y = loge x = lnx natural logarithm
a = 10 : y = log10 x = lgx decimal logarithm
a = 2 : y = log2 x = ldx dual logarithm

Remark: The most commonly used logarithm is lnx, but there are certain applications for other
logarithms as well. For instance, the decimal logarithm can be used to find the number of digits
in a decimal number (lg4821 = 3.683 → taking the whole number in front of the decimal point
and adding 1 gives the number of digits, 4). Similarly, the dual logarithm can be used to find
the number of bits or binary digits that are necessary to represent a number n in binary format,
i.e. as zeros and ones.

Rules and tricks for dealing with logarithms:

ln xn = n lnx

lnx1 x2 = ln x1 + ln x2 ln
x1

x2
= ln x1 − ln x2

loga x =
lnx

ln a

Note: Every logarithm can be expressed in terms of the natural logarithm, and every exponential
function can be written in terms of the basis e

ax = ex ln a with a > 0 Very useful relation!
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0 1 2 3 4

−1

0

1

2

 ln x
−ln x
 ld x
 lg x

Figure 15: The logarithmic functions y = ln(x), y = lg(x), y = ld(x), and y = − ln(x).

1.8.2 Other inverse functions

y = sin x → x = arcsin y arc sine
y = cosx → x = arccos y arc cosine
y = tanx → x = arctan y arc tangent
y = cotx → x = arccot y arc cotangent
y = sinhx → x = arcsinh y

x = ln(y +
√

y2 + 1) area sine hyperbolic
y = coshx → x = arccosh y

x = ln(y +
√

y2 − 1) area cosine hyperbolic

−1 −0.5 0 0.5 1

−1

0

1

2

 asin x
acos x

(a) Arc sine, and arc cosine

−4 −2 0 2 4

−1

0

1

atan x
acot x

(b) Arc tangent, and arc cotangent

Figure 16: The inverse of the trigonometric functions
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1.9 Elementary Combinations of Functions

1.9.1 Superposition

Two functions are superimposed on each other by adding their values for the same x.

y = f1(x) + f2(x)

−2 −1 0 1 2

−2

−1

0

1

2

f
1
(x) = −x

f
2
(x) = 1

f
1
(x) + f

2
(x)

(a) Superposition of f1(x)=−x and f2(x)=1

−1 0 1

−1

0

1

f
1
(x) = −2x

f
2
(x) = x3

f
1
(x) + f

2
(x)

(b) Superposition of f1(x)=−2x and f2(x)=x3

Figure 17: Superposition of lines and functions

1.9.2 Modulation

A function is modulated by another function by multiplying their values for the same x.

y = f1(x) f2(x)

−1 0 1 2

−3

−2

−1

0

1

2

3 e−x

−e−x

e−x.cos 10x

(a) e−x is the envelope function of cos 10x

−4 −2 0 2 4

−1

0

1

sinx
−sinx
sin x.cos 10x

(b) cos 10x is modulated with sin x

Figure 18: Modulation of functions
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2 Differential and Integral Calculus

First derivatives of simple functions were studied by Galileo Galilei (1564-1642) and Johannes
Kepler (1571-1630). A systematic theory of differential calculus was developed by Isaac Newton
(1643-1727) and Gottfried Wilhelm Leibniz (1646-1710).

2.1 Difference Quotient

The difference quotient becomes the differential in the limit h → 0 and describes the slope of a
function y = f(x) at a given point x.

y′(x) =
dy

dx
= lim

h→0

y(x + h)− y(x)
h

−2 −1 0 1 2

−4

−2

0

2

y=x2

y’=2x

Figure 19: The slope of a curve is found from its derivative.

Notation: The limit value of the difference quotient is called the derivative of a function f(x).
Derivatives are denoted by

y′(x) ,
dy

dx
,

df

dx
,

d

dx
f(x) or sometimes in physics: ẏ(t)

Note: Here we consider first-order derivatives only.

Example: y = f(x) = x2

y′ =
dy

dx
= lim

h→0

(x + h)2 − x2

h
= lim

h→0

x2 + 2hx + h2 − x2

h
= lim

h→0

2hx + h2

h
= 2x

17



f(x+h)

f(x)

x+hx
{ h

Figure 20: Slope as h→ 0.

2.2 Derivatives of Elementary Functions

2.2.1 Polynomials

y = x2 → dy

dx
= 2x more general: y = xn → dy

dx
= nxn−1

2.2.2 Trigonometric functions

y = sinx → dy

dx
= cosx y = cosx → dy

dx
= − sinx

2.2.3 Exponential functions

y = ex → dy

dx
= ex

2.2.4 Hyperbolic functions

y = sinhx → dy

dx
= coshx y = coshx → dy

dx
= sinhx

18



2.2.5 Logarithms

y = lnx → dy

dx
=

1
x

2.3 The Basic Rules for Calculating Derivatives

If the derivatives of two functions u(x) and v(x) exist on an interval a < x < b, then the
derivatives of their combinations exist as well, i.e.

u + v, α u with α ∈ R, u v,
u

v
if v(x) 6= 0 for a < x < b

Rules:

(u + v)′ = d
dx{u + v} = u′ + v′ derivatives are additive

(α u)′ = d
dx{α u} = α u′ multiplication with a scalar

(u v)′ = d
dx{u v} = u′ v + u v′ product rule

(u
v )′ = d

dx{u
v } = u′ v−u v′

v2 quotient rule

Examples:
d

dx
{x17 + cosx} = 17x16 − sinx

d

dx
{35 coshx} = 35

d

dx
coshx = 35 sinhx

d

dx
{cosxex} = − sinxex + cosxex = ex(cosx− sinx)

d

dx
{cosx

ex
} =

− sinx ex − cosx ex

e2x
=
−ex (sinx + cos x)

e2x
= −sinx + cosx

ex

2.4 The Chain Rule

If u(x) and v(x) have derivatives and the image of v(x) is part of the source set of u(x), then
u(v(x)) has a derivative.

To understand what this complicated sentence means, consider ln(cosx). Here u(x) = lnx and
v(x) = cosx. The source set of cosx are all real numbers [−∞,∞], the image set of the cosine
are the numbers in the interval [-1, 1], and the source set of the logarithm are all positive real
numbers ]0,∞]. Therefore the image set of the cosine and the source set of the logarithm overlap
in the interval ]0, 1]. The source set of cosx that corresponds to the image set ]0, 1] is given by all
numbers where cosx is positive, i.e. ]− π

2 ,−π
2 [, ]3 π

2 ,−5 π
2 [, etc., and the function ln(cosx) exists

and has a derivative for these values of x.

[u(v(x))]′ =
d

dx
{u(v(x))} =

d u(v)
dv

d v(x)
dx

chain rule

19



Examples:
f(x) = cos(αx) → u(v) = cos v and v(x) = αx

d

dx
cosαx =

d cosαx

dαx

d αx

dx
= (− sinαx) α = −α sinαx

f(x) = (2x + 5)3 → u(v) = v3 and v(x) = 2x + 5

d

dx
(2x + 5)3 =

d (2x + 5)3

d (2x + 5)
d (2x + 5)

dx
= 3 (2x + 5)2 2 = 6 (2x + 5)2

2.5 Selected problems (the page from hell):

Important note: Now we can take the derivative of ANY analytic function !!!

f(x) = eln x → u(v) = ev and v(x) = lnx

f ′(x) = eln x 1
x

= x
1
x

= 1 of course we started with f(x) = x → f ′(x) = 1

f(x) =
√

sin(3α2 x5) = [sin(3α2 x5)]
1
2 = u(v(w(x)))

→ u(v) = v
1
2 v(w) = sin(3α2 x5) w(x) = 3α2 x5

f ′(x) =
d u(v(w(x)))

dv

d v(w(x))
dw

dw(x)
dx

=
1
2

[sin(3α2 x5)]
1
2
−1 cos(3α2 x5) 3 α 5x5−1

=
15α x4 cos(3α2x5)

2
√

sin(3α2x5)
who guessed this result ???

f(x) =
3x2 + cos kx

coshx
→ f ′(x) =

(6x− k sin kx) cosh x + (3x2 + cos kx) sinh x

cosh2 x

Also quite ugly, but technically correct !!!

f(x) = cos2 kx = cos kx cos kx → f ′(x) = 2 cos kx(− sin kx) k = −2k cos kx sin kx

or → (− sin kx) k cos kx + cos kx(− sin kx) k = −2k cos kx sin kx

f(x) = y = (x5 + ecos kx)1/2 → y′ =
1
2
(x5 + ecos kx)−1/2 (5 x4 + ecos kx(−k sin kx))

=
5x4 − k sin 2kx ecos kx

2 (x5 + ecos kx)1/2

20



y = xx = ex ln x (remember: ax = ex ln a) → y′ = ex ln x (lnx + 1) = xx(lnx + 1)

2.6 Integral Calculus: Definite Integrals

How do you determine the area A enclosed by a function f(x) and the horizontal axis. It is
simple if f(x) = f0 = const.

Figure 21: Area A enclosed by the horizontal axis and a horizontal line.

For the general case, divide the area A into subareas Aν between xν−1 and xν .

Then the subarea Aν may be approximated by Aν = f(ξν)(xν −xν−1) for xν−1 < ξν < xν . There
exists always a ξν such that this is true.

Reconstruct the area A as follows:

A =
N∑

ν=1

= Aν =
N∑

ν=1

f(ξν) (xν − xν−1)︸ ︷︷ ︸
∆x

This sum is called the Riemann sum. The limit of the Riemann sum is the area A and defines
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υ υ

υ

Figure 22: Area enclosed by the function f(x) and the horizontal axis.

the integral.

A = lim
N→∞

N∑

ν=1

f(ξν)∆x =
∫ x=b

x=a
f(x) dx

The area enclosed by f(x) and the horizontal x-axis over an interval x ∈ [a, b] is given by definite
integral ∫ b

a
f(x) dx = F (x)

∣∣∣
x=b

x=a
= F (x)

∣∣∣
b

a
= F (b)− F (a)

where F (x) is called the anti-derivative of f(x) and

f(x) =
dF (x)

dx
= F ′(x) or, which is equivalent, F (x) =

∫
f(x) dx + const

Integration is to some extend the inverse operation of differentiation.

Examples:

a) The shaded area is given by

A =
∫ 1

−1
f(x) dx = F (1)− F (−1)

We know f(x) = x2 = F ′(x). Now we guess F (x) = 1/3x3 + c.

A = F (1)− F (−1) =
1
3
13 + c− {1

3
(−1)3 + c} =

2
3
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(a) Definite integral of y = x2

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

+

−

(b) Definite integral of y = x3

Figure 23: Definite integrals as areas under curves

b) Again, the shaded area is given by

A =
∫ 1

−1
f(x) dx = F (1)− F (−1)

We guess F (x) = 1
4x4 + c and find

A =
∫ 1

−1
f(x) dx = F (1)− F (−1) =

1
4
14 + c− {1

4
(−1)4 + c} = 0

Why does the area A vanish? It actually consists of two areas, A1 and A2, which both have
the same size, but opposite sign A1 = −A2.

A1 = F (0)− F (−1) =
1
4
04 + c− 1

4
(−1)4 − c = −1

4
= −A2

Note: In an integral the area below the x-axis is counted negative. In order to calculate the
shaded area we have to evaluate all pieces between intersections of the curve with the horizontal
axis separately and add up their magnitudes. Here: A =|A1 | + |A2 |=|−1

4 | + | 14 |= 1
2 .

2.7 Methods of Integration

Properties of integrals:

∫ b

a
f(x) dx =

∫ c

a
f(x) dx +

∫ b

c
f(x) dx

∫ b

a
f(x) dx = F (b)− F (a) = −(F (a)− F (b)) = −

∫ a

b
f(x) dx

∫ b

a
(f1(x) + f2(x)) dx =

∫ b

a
f1(x) dx +

∫ b

a
f(x)2 dx
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∫ b

a
c f(x) dx = c

∫ b

a
f(x) dx where c is a constant

Approach (in order of preference):

• Guess: Find F (x) such that dF (x)
dx = f(x). For polynomials: F (a xn) = a

n+1 xn+1.

Note: Here n can be negative or any rational number except -1.

• Tables: F (x) can be looked up in mathematical tables of anti-derivatives and/or definite
integrals which can be found in e.g. Bronshteyn, Semendjajew or Gradsteyn.

• Partial integration: Corresponds to the product rule but only works for special cases.

∫
f(x) g(x)dx = F (x) g(x)−

∫
F (x) g′(x) dx

∫ b

a
x coshx dx = x︸︷︷︸

g

sinhx︸ ︷︷ ︸
F

|ba −
∫ b

a
sinhx︸ ︷︷ ︸

F

1︸︷︷︸
g′

dx = b sinh b− a sinh a− (cosh b− cosh a)

• Substitution: Corresponds to the chain rule but again only works for special cases.

∫ x=b

x=a
f(φ(x))φ′(x) dx =

∫ u=φ(b)

u=φ(a)
f(u) du where u = φ(x)

∫ π

0
cos2 x sinx dx substitute: u = cosx = φ(x)

u′ =
du

dx
= − sinx = φ′(x) → du = − sinxdx = φ′(x)dx → dx = − du

sinx

Substitute the integral:

∫ x=π

x=0
cos2 x sinx

−du

sinx
= −

∫ x=π

x=0
cos2 x du = −

∫ x=π

x=0
u2 du

Express the boundaries in terms of u:

x = 0 → u = cos 0 = 1 x = π → u = cosπ = −1
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Insert them and perform the integration:

∫ π

0
cos2 x sinx dx = −

∫ u=−1

u=1
u2 du = −1

3
u3

∣∣∣
−1

1
= −1

3
(−1)3 +

1
3
13 =

2
3

2.8 Symmetries

A function f(x) is called an even function if f(−x) = f(x); a function g(x) is called an odd
function if g(−x) = −g(x). The product of two even functions or the product of two odd
functions is an even function; the product of an odd and an even function is an odd function.

The integral over a symmetric interval around x = 0 of an odd function vanishes.

∫ b=a

−a
g(x) dx =

∫ b=a

−a
f(x) g(x) dx = 0 if f(−x) = f(x) and g(−x) = −g(x)

Example: ∫ 1

−1
x2︸︷︷︸

f(x)

sin 3x︸ ︷︷ ︸
g(x)

dx = 0

−3 −2 −1 0 1 2 3

−5

0

5

+
+

−
−

Figure 24: Due to symmetry the integral
∫ 1
−1 x2 sin 3x dx vanishes
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2.9 Orthogonality of trigonometric functions

The cosine is an even function cos(−x) = cosx, and the sine is an odd function sin(−x) = − sinx.
Moreover, these trigonometric functions are 2π-periodic, hence it is sufficient to consider integra-
tion over windows of 2π only.

∫ 2π

0
sinx cosx︸ ︷︷ ︸

1
2

sin 2x

dx =
1
2

∫ 2π

0
sin 2x dx = −1/4 cos 2x

∣∣∣
2π

0
= 0 or equivalent:

∫ π

−π
sinx cosx dx = 0

∫ π

−π
sin 2x sinx dx = 2

∫ π

−π
sin2 x︸ ︷︷ ︸

u2

cosx dx︸ ︷︷ ︸
du

= 2
∫ u=0

u=0
u2 du = 0

Here we used the substitution u = sinx and du = cosx dx with the boundaries x = π → u = 0
and x = −π → u = 0.

More general cases:

∫ π

−π
cosmx cosnx dx =

∫ π

−π
sinmx sinnx dx = π δmn

∫ π

−π
cosmx sinnx dx = 0 ∀ m, n where ”∀” means ”for all”

δmn is called the Kronecker delta which is defined as δmn = 1 if m = n and δmn = 0 else.

2.10 Integrals to Infinity

If one or both boundaries of an integral are infinite this does not mean that the area under this
curve cannot be finite. A trivial example is given by the integral from −∞ to +∞ over an odd
function. This integral vanishes, as seen above, independent of the function as long as it is odd.

A nontrivial example is

∫ ∞

1

1
x2

dx = − −1
x

∣∣∣∣
∞

1

= −(
1
∞︸︷︷︸
=0

−1
1
) = 1

however ∫ ∞

1

1
x

dx = ln x
∣∣∣
∞

1
= ln∞− ln 1︸︷︷︸

=0

= ∞

In the same way even if a function has a singularity like 1√
x

for x → 0, the area can still be finite

∫ 2

0
x−

1
2 dx = 2x

1
2

∣∣∣
2

0
= 2

√
x

∣∣∣
2

0
= 2 (

√
2−

√
0) = 2

√
2
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but again ∫ 2

0
x−1 dx =

∫ 2

0

1
x

dx = lnx
∣∣∣
2

0
= ln 2− ln 0︸︷︷︸

=−∞
= ∞

And finally an exponential function

∫ ∞

0
e−x dx = −e−x

∣∣∣
∞

0
= −(e−∞︸︷︷︸

=0

− e0︸︷︷︸
=1

) = 1

0 1 2 3

0

1

2

3

(a)
∫∞
1

x−2 dx = 1

0 1 2 3

0

1

2

3

(b)
∫ 2

0
x−

1
2 dx = 2

√
2

0 1 2 3

0

1

2

3

(c)
∫∞
0

e−x dx = 1

0 1 2 3

0

1

2

3

(d)
∫∞
1

x−1 dx = ∞
0 1 2 3

0

1

2

3

(e)
∫ 2

0
x−1 dx = ∞

Figure 25: Definite integrals that involve infinities

2.11 Functions with no Antiderivative

As we have seen, it quite straightforward to calculate the derivatives of quite complicated ”mon-
sters” of functions. On the other hand, it is much more difficult to find antiderivatives. To
make things worse there are certain functions with very important applications for which an
antiderivative does not exist, i.e. it cannot be expressed in terms of elementary functions.

One of these simple functions which do not have an antiderivative is f(x) = e−x2
. This is very

inconvenient because this function is the famous bell-shaped Gaussian which rules the entire field
of statistics, because the probability that an event occurs within a certain interval of a parameter
is given by area under this curve. This area unfortunately cannot be calculated using a pocket
calculator that has only elementary functions. The definite integral can be found numerically or
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0

0.5
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(a)
∫∞
−∞ e−x2

dx =
√

π

−15 −10 −5 0 5 10 15

0

0.5

1

(b)
∫∞
−∞

sin x
x

dx = π

Figure 26: Definite integrals over functions with no antiderivatives

looked up in tables, and it also has a name: the ”error function” erf(x)

erf(x) =
2√
π

∫ x

0
e−u2

du note:
∫ ∞

−∞
e−x2

dx =
√

π

A second example of such a function with no antiderivative is the so-called ”integral sine” Si(x)

Si(x) =
∫ x

0

sinu

u
du note:

∫ ∞

−∞

sinx

x
dx = π
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3 Vector Algebra

3.1 Vectors

Until now we have dealt only with scalars which are one-dimensional entities consisting of a
magnitude and a sign. Higher-dimensional entities are composed of several scalars each of which
is related to a particular direction. These objects are called vectors and are represented in print
by either using bold symbols like x or with an arrow on top as in −→x . An n-dimensional vector
has n components xi with i = 1, ..., n. Its magnitude is given by |−→x |=

√
x2

1 + x2
2 + ... + x2

n.

Notation: −→x =




x1

x2

· · ·
xn


 is a column vector and −→x = (x1, x2, ..., xn) is row vector.

Sometimes a row vector is specifically denoted as −→x T (T for transposed).

A vector is graphically represented by an arrow. The vector’s magnitude | −→x | is denoted by
the arrow’s length. If the starting point of the vector coincides with the origin of the coordinate
system, then its end point corresponds to the coordinates of the vector components. Such a
vector is called a coordinate vector.

y

x

Figure 27: The vector (1, 2) is an arrow from the origin to the point x = 1 and y = 2.

3.2 Elementary Vector Operations

3.2.1 Addition and Subtraction

The sum two vectors can be obtained graphically by either shifting the tail of the second arrow
to the head of the first, or by constructing the parallelogram that is defined by the two arrows.
The difference between two vectors can be found by adding the vector that has the same length
but points into the opposite direction.
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a

b

c

(a) The sum of two vectors −→c = −→a +
−→
b (b) The difference between two vectors −→c = −→a −−→b

Figure 28: Addition and subtraction of vectors

In components: −→a +
−→
b = (a1 + b1, ..., an + bn) = (c1, ..., cn) = −→c

Properties:

−→a +
−→
b =

−→
b +−→a commutative

(−→a +
−→
b ) +−→c = −→a + (

−→
b +−→c ) associative

A closed polygon corresponds to the vector sum equal
−→
0 .

a
5

a
4

a
3

a
2

a
1

Figure 29: −→a1 +−→a2 + . . . +−→a5 =
−→
0

Important note: Make sure you understand that
−→
0 6= 0 !!!!
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3.2.2 Multiplication of a Vector with a Scalar

A vector can be multiplied with a scalar by multiplying each of the components which results in
either stretching or squeezing of the vector and may change its orientation.

−→a =
(

1
1

) −→
b = −2−→a = −2

(
1
1

)
=

( −2
−2

)

Figure 30: The multiplication of a vector with a scalar
−→
b = −2−→a

Linear dependence of vectors:

n vectors −→a1, · · · ,−→an are called linearly independent, if the only way to fulfill

α1
−→a1 + α2

−→a2 + · · ·+ αn
−→an = 0 is α1 = α2 = · · · = αn = 0

If this relation can be fulfilled with certain αi 6= 0, then the vectors are said to be linearly
dependent. For instance, imagine α1 6= 0, all others are free. Then −→a1 may be expressed by the
other vectors and is redundant.

−→a1 = − 1
α1

n∑

i=2

αi
−→ai (1)

One-dimensional: α−→a represents all vectors on a straight line. Such vectors are called collinear.

Two-dimensional: α1
−→a1 + α2

−→a2 represents all vectors in the plane. These vectors are coplanar.
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a

(a) Collinear vectors define a line (b) Two non-collinear vectors span a plane

Figure 31: Collinear and coplanar vectors

3.2.3 Scalar Product

Two vectors −→a and
−→
b can be multiplied such that the result is a scalar c. This operation is

called the scalar, dot or inner product.

−→a · −→b =|−→a | |−→b | cosα where α is the angle between −→a and
−→
b

−→a · −→b = a1 b1 + a2 b2 + ... + an bn scalar product in components

The scalar product measures the contribution of vector −→a to vector
−→
b If the angle between −→a

and
−→
b is 90◦ the two vectors are orthogonal, there are no contributions at all.

Properties:

−→a · −→b =
−→
b · −→a commutative

(c−→a ) · −→b = c (−→a · −→b ) = −→a · (c
−→
b ) associative

(−→a1 +−→a2) · −→b = −→a1 · −→b +−→a2 · −→b distributive

Examples:

−→a =
(

2
0

) −→
b =

(
1
−2

)
−→a · −→b = 2 · 1 + 0 · (−2) = 2

|−→a |= 2 |−→b |=
√

5 → cosα =
−→a · −→b
|−→a | |−→b |

=
2

2
√

5
→ α = arccos

1√
5

= 1.107 ≈ 63◦
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(a) Projection of
−→
b on −→a (b) If α > 900 then cos α < 0 and the scalar prod-

uct is negative

Figure 32: Scalar Product

(a) The dot product has is maximal value in the
case α = 0 → cos α = 1

α = π/2

(b) For α = 90◦ the scalar product vanishes be-
cause cos α = 0

Figure 33: Scalar product for parallel and orthogonal vectors

3.2.4 Vector Product

Two vectors −→a and
−→
b can be multiplied such that the result is a vector −→c . This operation is

called the vector, cross or outer product.

The vector product exists only in three dimensions !!!

−→a ×−→b = −→c |−→c |=|−→a ×−→b |=|−→a | |−→b | sinα




a1

a2

a3


×




b1

b2

b3


 =




a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1


 vector product in components

The result of a vector product between two non-collinear vectors −→a and
−→
b is a vector −→c which

has a magnitude of | −→a | | −→b | sinα and points into the direction perpendicular to the plane
defined by −→a and

−→
b such that −→a ,

−→
b and −→c form a right-handed system. To find this direction
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have your right thumb point into the direction of −→a , the right index into the direction of
−→
b , and

the right middle finger perpendicular to the plane defined by −→a and
−→
b . There is only one way

to do that without hurting yourself seriously. Now the middle finger points into the direction of−→c .

Hint: It is imperative that you use the right hand for this.

Properties:

−→a ×−→b = −−→b ×−→a anti-commutative

(c−→a )×−→b = c (−→a ×−→b ) = −→a × (c
−→
b ) associative

(−→a1 +−→a2)×−→b = −→a1 ×−→b +−→a2 ×−→b distributive

Note: In 3 dimensions a plane can be defined by a point in the plane and its normal vector −→n .

a

C

α

(a) −→a and
−→
b span a plane

u

(b) A plane defined by a point and its normal
vector

Figure 34: Vectors in 3-dimensional space

3.3 Matrices

A matrix A operates on a vector −→x and transforms, i.e. stretches, squeezes or rotates it.

−→y = A−→x where A =




A11 A12 A1n

A21
. . . . . .

An1 · · · Ann


 = Aij is a n× n matrix

−→y =




y1

y2
...

yn


 =




A11 x1 + A12 x2 + . . . A1n xn

A21 x1 + A22 x2 + . . . A2n xn
...

An1 x1 + An2 x2 + . . . Ann xn



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(
1 1
1 −2

)

︸ ︷︷ ︸
A

(
1
1

)

︸ ︷︷ ︸
−→x

=
(

2
−1

)

︸ ︷︷ ︸
−→y

Figure 35: Rotation and scaling of a vector

Properties:
A = B → aij = bij

A + B → aij + bij

c A → c aij

A + B = B + A

3.4 Multiplication of Matrices

The product of two matrices A and B is found by calculating the scalar products between the
rows of matrix A and the columns of matrix B. This implies that the number of columns of
matrix A must be the same as the number of rows of matrix B.

Examples:
(

a11 a12

a21 a22

)(
b11 b12

b21 b22

)
=

(
a11 b11 + a12 b21 a11 b12 + a12 b22

a21 b11 + a22 b21 a21 b12 + a22 b22

)

AB =
(

5 3
2 7

)(
2 −3
−1 4

)
=

(
5 · 2 + 3 · (−1) 5 · (−3) + 3 · 4
2 · 2 + 7 · (−1) 2 · (−3) + 7 · 4

)
=

(
7 −3
−3 22

)

B A =
(

2 −3
−1 4

)(
5 3
2 7

)
=

(
4 −15
3 −25

)
6= AB
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The multiplication of matrices is NOT commutative!!!!!

In general a n×m matrix can be multiplied with a m×n matrix and the result is a n×n matrix.

C = AB =




Σi a1i bi1 Σi a1i bi2 . . . Σi a1i bin

Σi a2i bi1 Σi a2i bi2 . . . Σi a2i bin
...

...
...

Σi ani bi1 Σi ani bi2 . . . Σi ani bin


 with Σi =

m∑

i=1

3.5 Transposed Matrix

The transposed of a matrix is found by exchanging the row and column vectors.

A =




A11 A12 A13 . . .
A21 A22 · · · ·
...

...
. . .

...
· · · · · Amn


 → AT =




A11 A21 A31 . . .
A12 A22 · · · ·
...

...
. . .

...
· · · · · Anm




Examples:

A =
(

2 3 5
1 4 0

)
→ AT =




2 1
3 4
5 0




A AT =
(

2 3 5
1 4 0

)


2 1
3 4
5 0


 =

(
38 14
14 17

)

AT A =




2 1
3 4
5 0




(
2 3 5
1 4 0

)
=




5 10 10
10 25 15
10 15 25




This should eliminate any remaining doubts that matrix multiplication could be commutative.
These matrices are not even the same size.

3.6 Basis vectors

Basis vectors span a coordinate system and can be represented in various ways

−→
i ,
−→
j ,
−→
k −→e1 ,−→e2 ,−→e3




1
0
0


 ,




0
1
0


 ,




0
0
1



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−→s =
(

x
y

)
= x

−→e1︷ ︸︸ ︷(
1
0

)
+y

−→e2︷ ︸︸ ︷(
0
1

)
= x−→e1 + y−→e2

Figure 36: Basis vectors.

3.7 Transformation of coordinate systems

In general the component of a vector depend on the coordinate system used. Coordinate systems
can be transformed, which changes the vector components in a certain way and a vector −→s
in the old coordinate system becomes the vector −̃→s in the new coordinates. The two easiest
transformations of a coordinate system are a translation or shift and a rotation around the
origin.

3.7.1 Translation

A translation of the coordinate system is performed by adding a constant vector

−→s → −̃→s = −→s +
−→
t shifts the coordinate system by

−→
t =

(
t1
t2

)

Components of −→s in old system: −→s =
(

x + t1
y + t2

)
=

(
1 + t1
2 + t2

)

Components of −̃→s in the new system: −̃→s =
(

x̃
ỹ

)
=

(
2
1

)
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(a) Translation of the coordinate system (b) Rotation of the coordinate system

Figure 37: Coordinate transformations: Translation and Rotation

3.7.2 Rotation

A rotation of the coordinate system by an angle α around the origin is performed by applying
the rotation matrix R to the vector −̃→s

R =
(

cosα sinα
− sinα cosα

)
−̃→s = R−→s =

(
cosα − sinα
sinα cosα

)(
x
y

)
=

(
x cosα− y sinα
x sinα + y cosα

)

The rotation matrix R can be found by calculating the basis vectors −̃→e1 and −̃→e2 for the new
coordinate system

−̃→e1 = cosα−→e1 + sin α−→e2 and −̃→e2 = − sinα−→e1 + cos α−→e2

Representation of a point −→s :

−→s =
(

x
y

)
= x−→e1 + y−→e2︸ ︷︷ ︸

old system

= x̃ −̃→e1 + ỹ −̃→e2︸ ︷︷ ︸
new system

=
(

x̃ cosα + ỹ sinα
−x̃ sinα + ỹ cosα

)

Relation between old and new coordinates:

−→x = A −̃→x where A =
(

cosα − sinα
sinα cosα

)

−̃→x = AT −→x with AT =
(

cosα sinα
− sinα cosα

)
and AAT =

(
1 0
0 1

)

−→s = x−→e1 + y−→e2 = x̃ (cosα−→e1 + sinα−→e2)︸ ︷︷ ︸
−̃→e1

+ỹ (− sinα−→e1 + cosα−→e2)︸ ︷︷ ︸
−̃→e2

= (x̃ cosα− ỹ sinα)︸ ︷︷ ︸
x

−→e1 + (x̃ sinα + ỹ cosα)︸ ︷︷ ︸
y

−→e2
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3.7.3 Polar coordinates

Polar coordinates are often used if the problem under consideration has a certain symmetry.
They are represented by a vector −→er from the origin to a point in the plane and a vector −→eϕ from
that point with the direction tangentially to the unit circle.

−→
S =

(
x
y

)
= x−→e1 + y−→e2 =

(
r cosϕ
r sinϕ

)
= r−→er + ϕ−→eϕ →

(
r
ϕ

)

pol

with r =
√

x2 + y2 ϕ = arctan
y

x

Figure 38: Polar coordinates

Example:

−→
S =

(
1
1

)

cart

= x−→e1 + y−→e2 → r =
√

12 + 12 =
√

2 ϕ =
π

4
= 450

−→
S = r−→er +

π

4
−→eϕ →

( √
2

π
4

)

pol

Note: The quantity
( √

2
π
4

)

pol

is not a vector!!!!

3.7.4 Non-orthogonal Coordinate Systems

Using a system of basis vectors that is orthogonal and normalized, i.e. −→e1 · −→e1 = −→e2 · −→e2 = 0 and−→e1 · −→e2 = 0, or more general −→ei · −→ej = δij is very convenient because it is straight forward to find
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a certain component of a vector simply by multiplying with the corresponding basis vector

−→x = x1
−→e1 + x2

−→e2 =





−→x · −→e1 = x1

=1︷ ︸︸ ︷−→e1 · −→e1 +x2

=0︷ ︸︸ ︷−→e2 · −→e1 = x1

−→x · −→e2 = x1
−→e1 · −→e2︸ ︷︷ ︸

=0

+x2
−→e2 · −→e2︸ ︷︷ ︸

=1

= x2

Sometimes, however it is necessary to represent vectors in a basis system −→u , −→v that is not
orthogonal. The easiest way to deal with this situation is to introduce a second set of basis
vectors, the so-called adjoint vectors or dual basis −→u †, −→v † such the relations

−→u † · −→u = −→v † · −→v = 1 and −→u † · −→v = −→v † · −→u = 0

are fulfilled. In components these equations read

u†1 u1 + u†2 u2 = 1 v†1 v1 + v†2 v2 = 1 u†1 v1 + u†2 v2 = 0 v†1 u1 + v†2 u2 = 0

which are four equations for the four unknowns u†i , v†i and allows us to determine the adjoint
vectors −→u † and −→v † if the original basis vectors −→u and −→v are linearly independent, i.e. not
collinear.

Now we can express vectors in the basis−→u and−→v , and determine their components by multiplying
with the corresponding vectors from the adjoint basis

−→x = a−→u + b−→v =





−→x · −→u † = a

=1︷ ︸︸ ︷−→u · −→u †+ b

=0︷ ︸︸ ︷−→v · −→u † = a

−→x · −→v = a −→u · −→v †︸ ︷︷ ︸
=0

+ b −→v · −→v †︸ ︷︷ ︸
=1

= b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

to be done

Figure 39: Adjoint basis vectors

Note: An ortho-normal basis system is simply the special case where the original and adjoint
basis vectors are the same.
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3.8 Determinants

The determinant is a is a descriptor of a matrix. The determinant of a 2× 2 matrix is given by

detA =
∣∣∣∣

a11 a12

a21 a22

∣∣∣∣ = a11 a22 − a21 a12

The determinant of a 3× 3 matrix it is defined as

detA =

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a11 a22 a33 + a12 a23 a31 + a13 a21 a32 − a13 a22 a31 − a11 a23 a32 − a33 a12 a21

Hint: The question arises, of course: ”Who can remember something like this?” Well, it is
actually not that difficult using the following construction. First copy the left and the middle
column to the right. Then go through this scheme as indicated below: the left to right or
southeast diagonals are counted positive, the right to left or southwest diagonals are counted
negative, resulting in the formula for the determinant of a 3 × 3 matrix (unfortunately such a
procedure does not exist for higher dimensional matrices and how to find their determinants is
beyond the scope of this course).

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

⇒





a11 a12 a13 a11 a12

↘ ↘ ↘
a21 a22 a23 a21 a22 positive: +

↘ ↘ ↘
a31 a32 a33 a31 a32

a11 a12 a13 a11 a12

↙ ↙ ↙
a21 a22 a23 a21 a22 negative: –

↙ ↙ ↙
a31 a32 a33 a31 a32

Properties:

If at least two of the column vectors are linearly dependent the determinant detA = 0.

det(AB) = detA det B

Examples:
x− 2y = α1

5 (x− 2y) = α2
A =

(
1 −2
5 −10

)
−→α =

(
α1

α2

)

detA = (−10) · 1− (−2) · 5 = 0
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3 1 2 3 1
0 −2 2 0 −2
1 3 0 1 3

= 3 · (−2) · 0 + 1 · 2 · 1 + 2 · 0 · 3− 2 · (−2) · 1− 3 · 2 · 3− 1 · 0 · 0 = −12

Note: The components of the vector product can be found from a determinant

−→a ×−→b =

∣∣∣∣∣∣

−→
i

−→
j

−→
k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
=
−→
i (a2 b3 − a3 b2) +

−→
j (a3 b1 − a1 b3) +

−→
k (a1 b2 − a2 b1)

3.9 The Inverse of a Matrix A−1

The matrix A has an inverse with the property AA−1 = I =




1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1


 if det A 6= 0

Note:
−→y = A−→x → −→x = A−1−→y

det(AA−1) = det I = 1 = detA det A−1 → detA−1 =
1

det A

Inverse of a 2× 2 matrix:

A =
(

a11 a12

a21 a22

)
A−1 =

1
det A

(
a22 −a12

−a21 a11

)

⇒ AA−1 =
(

a11 a12

a21 a22

)
1

det A

(
a22 −a12

−a21 a11

)

=
1

a11 a22 − a12 a21

(
a11 a22 − a12 a21 0

0 a11 a22 − a12 a21

)
= I =

(
1 0
0 1

)
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3.10 Linear Systems of Equations

A system of the form

y1 = a11 x1 + a12 x2 + . . . + a1n xn

y2 = a21 x1 + a22 x2 + . . . + a2n xn
...

...
yn = an1 x1 + an2 x2 + . . . + ann xn

or




y1

y2
...

yn


 =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann







x1

x2
...

xn




is called a linear system of equations and can be conveniently written in terms of vectors and
matrices −→y = A−→x . In most cases the coefficients aij and the values on the left hand side yi are
known, and one is interested in finding a solution, i.e. values for the xi such that all equations are
fulfilled. What are the conditions that such a system has solutions and what are their properties?

We distinguish two cases:

1. −→y 6= −→
0 , i.e. at least one of the yi 6= 0. In this case the system is called inhomogeneous and

it has a unique solution if detA 6= 0. Then the matrix A has an inverse and the solution is
given by −→x = A−1−→y . For detA = 0 the system has either no solution or infinitely many
depending on −→y ;

2. −→y =
−→
0 , i.e. all of the yi = 0. In this case the system is called homogeneous and it has

always the solution −→x =
−→
0 , which is called the trivial solution. Non-trivial solutions exist

only if detA = 0 and then there are infinitely many.

Examples:

3x1 + x2 = 6
3x1 − x2 = 12

inhom., detA =
∣∣∣∣

3 1
3 −1

∣∣∣∣ = −6 6= 0 → unique
solution

→ x1 = 3
x2 = −3

3x1 + x2 = 6
6x1 + 2 x2 = 10

inhom., detA =
∣∣∣∣

3 1
6 2

∣∣∣∣ = 0 → 12 = 10 fi → no
solution

3x1 + x2 = 6
6x1 + 2 x2 = 12

inhom., detA =
∣∣∣∣

3 1
6 2

∣∣∣∣ = 0 → x2 = −3 x1 + 6 → infinitely many
solutions

3x1 + x2 = 0
3x1 − x2 = 0

hom., detA =
∣∣∣∣

3 1
3 −1

∣∣∣∣ = −6 → x2 = −3x1

x2 = 3x1
→ trivial

solution
→ −→x =

−→
0

6x1 + 2 x2 = 0
3x1 + x2 = 0

hom., detA =
∣∣∣∣

6 2
3 1

∣∣∣∣ = 0 → x2 = −3x1 → infinitely many
solution
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3.11 Eigenvalues and Eigenvectors

A matrix performs a stretch, squeeze and/or rotation of a vector.The vector and matrix elements
depend on the choice of the coordinate system. Since this choice is arbitrary, the question arises
whether there is a special or canonical representation which is independent of the coordinate
system.

There are distinguished directions [eigendirections (eigen ∼ self)] along which a matrix operates.
Vectors pointing into these directions are only scaled but not rotated.

A−→v = λ−→v λ ∼ eigenvalue −→v ∼ eigenvector

or: (A− λ I)︸ ︷︷ ︸
B

−→v = 0 where I =
(

1 0
0 1

)
is the identity matrix.

The linear system of equations given by b−→v = 0 is homogeneous and has nontrivial solutions−→v 6= −→
0 only if det b = 0. The condition for non-vanishing eigenvectors is therefore given by

det(A− λ I) = 0

from which the eigenvalues can be readily found. The eigenvector are then determined by solving

(A− λ I)−→v = 0

Figure 40: Eigenvalues and eigenvectors

Examples:

A =
(

13 4
4 7

)
→ eigenvalues: det (A− λ I) =

∣∣∣∣
13− λ 4

4 7− λ

∣∣∣∣ = 0

→ λ2 − 20λ + 75 = 0 (characteristic polynomial) → λ1 = 15, λ2 = 5
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λ1 = 15 :
13 v1 + 4 v2 = 15 v1

4 v1 + 7 v2 = 15 v2
→ v1 = 2 v2

→ choose: v2 = 1 → v1 = 2 → |−→v1 |=
√

5 ⇒ −→v1 =
1√
5

(
2
1

)

λ2 = 5 : A−→v2 = 5−→v2 → v2 = −2 v1 → choose: v1 = 1 → v2 = −2 ⇒ −→v2 =
1√
5

(
1
−2

)

Note: A matrix is called symmetric if aij = aji. Symmetric Matrices have real eigenvalues and
orthogonal eigenvectors −→v1 · −→v2 = 2 · 1 + 1 · (−2) = 0.

A =
(

1 0
2 2

)
→ eigenvalues: det (A− λ I) =

∣∣∣∣
1− λ 0

2 2− λ

∣∣∣∣ = 0

→ (1− λ)(2− λ) = 0 (characteristic polynomial) → λ1 = 1, λ2 = 2

→ eigenvectors: A−→v = λ−→v →
(

1 0
2 2

)(
v1

v2

)
= λ

(
v1

v2

)

λ1 = 1 :
v1 = v1

2 v1 + 2 v2 = v2
→ v1 = −1

2
v2

→ choose: v2 = 2 → v1 = −1 → |−→v1 |=
√

5 ⇒ −→v1 =
1√
5

( −1
2

)

λ2 = 2 : A−→v2 = 2−→v2 → v1 = 2 v1 → v1 = 0 → choose: v2 = 1 ⇒ −→v2 =
(

0
1

)
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Figure 41: Determining eigenvalues and eigenvectors

4 Complex Number Theory

There are polynomials, such as f(x) = x2 +1, which do not have a root, f(x) = 0 for x ∈ R. This
is one of the reasons to extend the numbers from x ∈ R to z ∈ C where C is the set of complex
numbers. Beyond this algebraic motivation there are many applications of complex numbers.

4.1 Representations and Basic Properties

A complex number z consists of a pair of real numbers called the real and imaginary part,
respectively, and a ”new” number ’i’ which has the property i2 = −1. While the real numbers
can be represented as points on a line, a complex number is given as a point in a plane (called
the complex plane) where the coordinates are its real (horizontal axis) and imaginary (vertical
axis) part.

z =
real︷︸︸︷
a + i

imaginary︷︸︸︷
b︸ ︷︷ ︸

complex number

with a, b ∈ R

The real and imaginary part, a and b, can be expressed by a distance from the origin r and an
angle ϕ (remember polar coordinates) in terms of a = r cosϕ and b = r sinϕ which leads to

z = a + i b = r cosϕ + i r sinϕ = r ei ϕ with r =
√

a2 + b2 ϕ = arctan
b

a
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Im
[z

]

Re[z]

z = a + ib = e

b

a

ϕ

iϕ

Figure 42: Representation of a complex number

Remarks:

• We will proof later by Taylor expansion that the relation cosϕ + i sinϕ = ei ϕ is true.

• All basic computations such as addition, subtraction, multiplication or division are defined
for z ∈ C.

• The inverse relation ϕ = arctan b
a is not unique because −b

−a = b
a . However, the first number

is the third quadrant whereas the second number is in the first quadrant. Most computer
languages, therefore have a second function to calculate the inverse tangent (usually called
atan2 or so) which accepts two arguments, i.e. b and a and not only their ratio b

a and
returns the correct angle in the [0, 2π] or [−π, π] range.

• The number i is called the imaginary unit and is defined as i2 = −1. It represents a
very powerful tool to simplify calculations, in particular when trigonometric functions are
involved. From its definition we find readily i = ±√−1, i3 = −i, and i4 = 1.

Rules for dealing with complex numbers: z = a + i b = r ei ϕ

Addition: (a1 + i b1) + (a2 + i b2) = a1 + a2 + i (b1 + b2)

Multiplication: (a1 + i b1) (a2 + i b2) = a1 a2 − b1 b2 + i (a1 b2 + a2 b1)

r1 ei ϕ1 r2 ei ϕ2 = r1 r2 ei (ϕ1+ϕ2)

⇒ Addition of two complex numbers is done by adding their corresponding vectors

⇒ Multiplication of two complex numbers results in the product of the individual
amplitudes and the sum of the phases
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Re[z]

z

z = z  + z13 2

1

2z

Figure 43: Adding two complex numbers

All the properties of real numbers are still preserved!

Examples: z1 = 1 + 2 i z2 = 2− i

z1 + z2 = 1 + 2 + i (2− 1) = 3 + i z1 z2 = 1 · 2− 2 · (−1) + i (1 · (−1) + 2 · 2) = 4 + 3 i

4.2 Complex conjugate

The complex conjugate of z = a + i b is defined as z∗ = a− i b

z∗ = a + i b = r e−i ϕ z z∗ = (a + i b) (a− i b) = a2 + b2 =|z |2 6= z2

Compare the following:

z2 = z z = (a + i b)2 = a2 − b2 + 2 i a b = (r ei ϕ)2 = r2 e2 i ϕ

|z |2 = z z∗ = (a + i b) (a− i b) = a2 + b2 = r ei ϕ r e−i ϕ = r2

Some more rules:

Complex division:
z1

z2
=

a1 + i b1

a2 + i b2
=

z1 z∗2
z2 z∗2

=
z1 z∗2
|z2 |2 =

a1 a2 + b1 b2 + i (a2 b1 − a1 b2)
a2

2 + b2
2

R(z) =
1
2
(z + z∗) =

1
2
(a + i b + a− i b) = a I(z) =

1
2
(z − z∗) =

1
2
(a + i b− (a− i b)) = b
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Figure 44: The complex number z and its complex conjugate z∗

ei ϕ = cosϕ + i sinϕ ⇒ cosϕ =
1
2
(ei ϕ + e−i ϕ) sinϕ =

1
2 i

(ei ϕ − e−i ϕ)
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5 Fourier Series

Fourier series go back to a publication by the French mathematician Jean Baptiste Joseph Fourier
(1768-1830) in 1804. A Fourier series is the decomposition of a function f(x) into a sum of
trigonometric functions. If not stated otherwise we will assume in the following f(x) = f(x+T ),
i.e. f(x) it periodic with a period of T .

A first simple step:

Find a representation of the function f(x) = A sin(kx − φ) in terms of sin kx and cos kx. Here
A is called the amplitude, k is the frequency and φ is the phase.

It can be shown that f(x) can be written in the form

f(x) = A sin(kx− φ) = a cos kx + b sin kx with a = −A sinφ b = A cosφ

and amplitude and phase given by: A =
√

a2 + b2 φ = − arctan
a

b

Example:

f(x) = 2 sin(x− π

3
) → a = −2 sin

π

3
= −

√
3 b = 2 cos

π

3
= 1 → f(x) = −

√
3 cos x + sinx

−6 −4 −2 0 2 4 6

−2

−1

0

1

2
2sinx− π/3
√3 cos x
sin x

Figure 45: f(x) = 2 sin(x− π
3 ) expressed as f(x) = −√3 cos x + sin x

Superposition of two curves with different frequencies (harmonics):

f(x) = A1 sin(kx− φ1) + A2 sin(2kx− φ2)

= a1 cos kx + b1 sin kx + a2 cos 2kx + b2 sin 2kx
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−1

0

1
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f
1
(x)=2sin(x− π/3)

f
2
(x)=−sin(2x+ π/6)

f
1
(x)+f

2
(x)

Figure 46: Superposition of two functions with different frequencies and phases

⇒ By these means arbitrarily complicated functions may be constructed or decomposed. Most
functions can be approximated by a sum over trigonometric functions and some higher harmonics.

f(x) ≈ a0

2
+

N∑

n=1

an cosnkx + bn sinnkx where an and bn are real constants

In the limit N →∞ a large class of functions can be represented as a Fourier series

f(x) =
a0

2
+

∞∑

n=1

an cosnkx + bn sinnkx

or by making use of cosnkx =
1
2
(einkx + e−inkx) and sinnkx =

1
2 i

(einkx − e−inkx)

f(x) =
a0

2︸︷︷︸
c0

+
∞∑

n=1




an − i bn

2︸ ︷︷ ︸
cn

einkx +
an + i bn

2︸ ︷︷ ︸
c−n

e−inkx


 =

∞∑
n=−∞

cn einkx

How can the Fourier coefficients an, bn and cn be found?

If f(x) can be represented by a Fourier series then

f(x) =
a0

2
+

∞∑

n=1

an cosnkx + bn sinnkx or f(x) =
∞∑

n=−∞
cn einkx
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Now remember the orthogonality relations for the trigonometric functions:

∫ π

−π
sinmkx sinnkx dx =

∫ π

−π
cosmkx cosnkx dx = π δmn

∫ π

−π
sinnkx cosmkx dx = 0

and for the exponentials:
∫ π

−π
eimx e−inx dx = 2π δmn

So we multiply both sides of the right equation above with e−imkx and integrate from −π to π

∫ π

−π
f(x) e−imkx dx =

∫ π

−π
e−imkx dx

∞∑
n=−∞

cn einkx =
∞∑

n=−∞
cn

∫ π

−π
einkxe−imkx dx

︸ ︷︷ ︸
2 π δmn

Because of the orthogonality of the exponential functions the sum disappears and we find for cn

cn =
1

2 π

∫ π

−π
f(x) e−inkx dx n = 0, ±1, . . .

In a similar way the left equation can be multiplied with sinmkx and in a second step with
cosmkx and again integrated over x from −π to π. Using the orthogonality relations for sine
and cosine the coefficients an and bn can be readily calculated

an =
1
π

∫ π

−π
f(x) cos nkx dx bn =

1
π

∫ π

−π
f(x) sin nkx dx n = 0, 1, . . .

Example: f(x) = x2 − π ≤ x ≤ π

bn =
1
π

∫ π

−π
f(x) sin nkx dx =

1
π

∫ π

−π
x2︸︷︷︸

even

sinnkx︸ ︷︷ ︸
odd

dx = 0 symmetries!!

an =
1
π

∫ π

−π
x2 cosnkx dx =

2
π

∫ π

0
x2 cosnkx dx =

2
π

[
2x

(nk)2
cosnkx +

(
x2

nk
− 2

(nk)3

)
sinnkx

]π

0

=
2
π

2π

(nk)2
cosnkπ = (−1)n 4

(nk)2

a0 =
2
π

∫ π

0
x2 dx =

2
π

[
1
3
x3

]π

0

=
2
3
π2

⇒ f(x) =
π2

3
+ 4

∞∑

n=1

(−1)n 1
(nk)2

cosnkx
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Figure 47: Decomposition of a non periodic function

5.1 Power Spectrum

Power spectrum is the power in the n-th frequency component plotted over all frequencies.

f(x) =
a0

2
+

∞∑

n=1

an cosnkx + bn sinnkx︸ ︷︷ ︸
n-th frequency component

⇒ Power: P = a2
n + b2

n = A2
n cos2 φn + A2

n sin2 φn = A2
n

⇒ For the above example: P = a2
n + b2

n = 02 +
16

(nk)4
∝ 1

n4

Typical situation: When a time series is not periodic it may be assumed to be periodically
contained. If T it the length of the time series, then the smallest frequency in the Fourier series
is given by k = 2π

T .

5.2 Gibbs’ Phenomenon

It is an obvious question, whether a Fourier series always gets closer and closer to the value of
a given function at all points x. The answer is ’yes’, if the function is continuous, and ’no’ if
the function is discontinuous, i.e. it has jumps. Unless we are very lucky, this is the case, for
instance if we assume a non-periodic time series to be periodically contained as above. To see
what happens around the discontinuities we look at the function

f(x) =
{

1 for 0 ≤ x < π
−1 for π ≤ x < 2 π

which represents a step function

53



0.2

0.4

0.6

0.8

1

1 2 3 4 5 6  n

1__

  n4

0 

Figure 48: The power spectrum for f(x) = x2

f

x

Figure 49: A finite non periodic time series is periodically contained

Periodically contained this function can be written as a Fourier series of the form

f(x) =
4
π

[
sinx +

sin 3x

3
+

sin 5x
5

+ +
sin 7x

7
+ ...

]
=

4
π

∞∑

n=0

sin(2 n + 1)x

2 n + 1

The figure shows functions obtained from the first (dashed) and the first two terms from the
Fourier series together with the function for n = 20. It is obvious, that in the vicinity of the
discontinuities the Fourier series does not converge to the values ±1 but overshoots and then
exhibits a fast damped oscillation which is called ’ringing’. These two effects together, the
overshoot and the ringing at discontinuities are known as Gibbs’ phenomenon.

5.3 Important Time-Frequency relations

54



0 2 4 6 8 10

−1

0

1

Figure 50: Gibbs’ phenomenon
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Figure 51: Power spectra of a random signal and a sine wave

5.4 Taylor Series

A Taylor series is an approximation of a function f(x) in the neighborhood of a given point in
terms of its derivatives. This technique has been developed by Brook Taylor(1685 − 1731) and
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first published in 1715.

In a first step we can approximate the function f(x) in the neighborhood around x0 by the
tangent through x0

f(x) = f(x0) + f ′(x0) (x− x0) + error

x = x0

f

f

Figure 52: Approximation of a curve at a point x0 with the tangent at x0

Can we do better than this? Yes if higher order derivatives are considered!

f(x) = f(x0) + f ′(x0) (x− x0) +
1
2!

F ′′(x0)(x− x0)2 +
1
3!

F ′′′(x0)(x− x0)3 + ...

Taylor series: f(x) =
∞∑

n=0

1
n!

dnf(x)
dxn

∣∣∣∣∣
x=x0

(x− x0)n with n! = 1 · 2 · 3 · ... n-factorial

A function f(x) may be approximated by truncating a Taylor Expansion around x0 at the m-th
order.

⇒ Polynomial representations of function work well if the error approaches 0 as the order n
increases.

Error estimate:

f(x) =
n∑

k=0

1
k!

dnf(x)
dxn

∣∣∣∣∣
x=x0

(x− x0)k + Rn(x)︸ ︷︷ ︸
error
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Lagrange formulation of the error Rn in a Taylor expansion that is truncated at order n

Rn(x) =
(x− x0)n+1

(n + 1)!
dnf(x)

dxn

∣∣∣∣
x=ξ

ξ = x0 + δ (x− x0) 0 < δ < 1

Examples:

Approximate the function sinx up to the 7-th order for x around x0 = 0 (Maclaurin series) using
a Taylor expansion

sinx ≈ sin 0︸︷︷︸
0

+ cos 0 · x︸ ︷︷ ︸
x

+ − sin 0
1
2!

x2

︸ ︷︷ ︸
0

− 1
3!

x3 +
1
5!

x5 − 1
7!

x7 symmetries!!

−3 −2 −1 0 1 2 3

−1

0

1

y= sin x
x
x−1/3! x 3

x−1/3! x 3+1/5! x5

x−1/3! x 3+1/5! x5−1/7! x7

Figure 53: Steps of a Taylor expansion of sinx around x0=0

The further away you move from the expansion point, the more significant the higher order
terms!!

Specific expansion of important functions:

sinx = x− 1
3!

x3 +
1
5!

x5 − ....
(−1)n+1

(2n + 1)!
x2 n+1 only odd terms

cosx = 1− 1
2!

x2 +
1
4!

x4 − ....
(−1)n

2n!
x2 n only even terms

ex = 1 +
1
2!

x2 +
1
3!

x3 + ....
1
n!

xn

ln(1 + x) = x− x2

2!
+

x3

3!
+ ....

(−1)n+1

n!
xn+1
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Euler’s Formula: eiθ = cos θ + i sin θ

ei θ = 1 + iθ +
1
2!

(i θ)2︸ ︷︷ ︸
−θ2

+
1
3!

(i θ)3︸ ︷︷ ︸
−i θ3

+
1
4!

(i θ)4︸ ︷︷ ︸
θ4

+
1
5!

(iθ)5︸︷︷︸
i θ5

+... Taylor expansion around θ = 0

⇒ ei θ = 1− 1
2!

θ2 +
1
4!

θ4 + ...
︸ ︷︷ ︸

cos θ

+i ( θ − 1
3!

θ3 +
1
5!

θ5 + ...
︸ ︷︷ ︸

sin θ

) q.e.d.

5.5 Finally some fun with Math

Now, let’s have a little more fun with complex numbers. From Euler’s formula we find

ei π = cosπ + i sinπ = −1

Now we take the natural log of both sides

ln{eiπ} = iπ = ln(−1) WHAT’S THAT ??

Didn’t your math teachers always tell you that there is not such a thing as the logarithm of a
negative number? Well, obviously they lied. But probably for good reasons: They didn’t want
you to get confused. Because as a smart kid you may have come up with

ei π
2 = cos

π

2
+ i sin

π

2
= i or take the log ln i = i

π

2

even worse, the logarithm of an imaginary number ? Or multiply the last equation by i

i ln i = i ∗ i
π

2
ln(ii) = −π

2

and raise into the exponent of e

ii = e−
π
2 ≈ 0.2078796 A real number !!!

Or you can rewrite the monster number π simply as π = −2 i ln i.

Confused? Don’t worry, you are in excellent company. The American mathematician Benjamin
Pierce in the last century called Euler’s formula ”mysterious”. The story goes that after having
shown these derivations to his class at Harvard he turned around and declared: ”Gentlemen,”
(there might not have been many women in math classes at this time) ”this is surely true, it
is absolutely paradoxical; we cannot understand what it means. But we have proved it, and
therefore we know it must be the truth.”

Talking about proofs: Check this one out

e3iπ = cos 3π + i sin 3π = −1 and take the log 3iπ = ln(−1)

Uuuups, didn’t we see above that ln(−1) = iπ ? So we have 3iπ = iπ or 1 = 3, right ? See,
that’s the trouble your teacher wanted to keep you away from.
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Epilogue:

There was a young fellow from Trinity
Who took

√∞
But the number of digits
Gave him the fidgets
He dropped Math and took up Divinity.

George Gamow
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